孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

2017/3/19 15:30:39

(文/王若度)最近,《自然》杂志的网站上刊登了一篇文章,在华人数学爱好者和学者之间产生了轰动。该文章的标题是《第一个无穷组素数成对出现的证明》。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

这篇文章为何会引起轰动呢?这要从“孪生素数猜想”说起。众所周知,素数是只含有两个因子的自然数(即只能被自身和1整除)。而“孪生素数”是指两个相差为2的素数,例如3和5,17和19等。孪生素数猜想是说,存在无穷对孪生素数。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

孪生素数的问题已经有约200年的历史。在1900年的国际数学家大会上,希尔伯特将孪生素数猜想列入了他那著名的23个数学问题。想了解这个问题的奇妙之处,需要大概了解素数的分布规律。2000多年前,古希腊数学家欧几里德最先证明了素数在自然数中有无穷多个。这个证明是数学爱好者都很熟悉的,英国数学家哈代在他的《一个数学家的辨白》中也对这个证明津津乐道(如果有人没有读过的,推荐一读)。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

随着数学慢慢发展,人们渐渐意识到素数在自然数的分布具有一定的规律。随着数量级的增大,素数的密度越来越小。例如,100以内有25个素数(25%),而100万以内的素数只有7.85%。尽管素数的分布越来越稀疏,但其稀疏程度却是可以度量的。例如,人们发现素数的倒数和为无穷,这就意味着素数的分布比完全平方数要稠密。在法国数学家勒让德和德国数学家高斯的推动下,人们开始猜测素数的分布律接近x/ln(x),即前x个整数中大约有x/ln(x)个素数。这一结果于1896年被两位数学家各自证明,此时距离勒让德的猜想提出已经有98年。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

素数的分布律说明,素数在自然数中越来越稀疏,同时素数之间的距离——平均而言——会越来越远。因此,孪生素数猜想也就显得很越发奇妙——如果素数之间的距离真的越来越远,那么出现无穷对距离为2的素数就不是那么显然的事了。这似乎说明素数的分布是相当“随机”的,而不是近似均匀的扩散。可能学概率论的读者会注意到,这一结论与概率论中“随时间推移,一维标准布朗运动的位置平均而言离0点越来越远,但却以概率1无穷次折回0点”有着异曲同工之妙。的确,素数的分布律与随机过程非常相似。然而,更为奇妙的是,素数的位置是完全是确定的,其本质上毫无随机性。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

终于可以讲到今天的新闻了。新罕布什尔大学(University of New Hampshire,UNH)任教的张益唐近日声称,其证明了存在无穷多对素数,其差小于7000万。尽管7000万是个很大的数字,但如果结果成立,就是第一次有人正式证明存在无穷多组间距小于定值的素数对。想想我们之前讲的,就会发现,既然素数之间的平均距离越来越远,那么存在无穷多组间距小于定值的素数对,与存在无穷多组间距为2的素数对(孪生素数猜想)是一样神奇的结论。无怪乎,美国数学家多利安·戈德菲尔( Dorian Goldfeld)评论说,从7000万到2的距离(指猜想中尚未完成的工作)相比于从无穷到7000万的距离(指张益唐的工作)来说是微不足道的。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

如果张益唐的结果为正确的,那无疑是世界数学界的一大进展,其结果影响力甚至可能超过陈景润在哥德巴赫猜想方面所做的工作。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

根据我一位朋友介绍,张益唐就读于北大数学78级,是当时最优秀的几个学生之一,因此也算上是我的师兄。网上关于张益唐的信息很少,只能查到他在UNH担任讲师(Lecturer)。这里,稍微讲解一下美国的学术体系。

美国学术界的核心是终身教职系统(Tenure-Track),分为助理教授(Assistant Professor), 副教授(Associate Professor)和教授(Professor)三个级别。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

这些教授职位就是传统意义的学者,既进行教学活动,也进行科研(如果是研究型大学的话,是科研为主)。一旦获得终身教职(通常是在升到副教授时,少部分学校是到正教授时,也有部分是助理教授期间),这些教授就可以做任何自己想做的科研,即使没有经费,科研没有进展,甚至不再科研,学校无正当理由(如渎职、犯罪等)也不能开除他们。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

因此,终身教职是学术界的核心精神,绝大多数数学家(除了在研究所工作的外)都会进入终身教职系统。

而讲师就差多了,是临时教学职位,收入比起同资历教授(包括助理教授)差很多,教学任务也远远比教授们重。科研上来说,则是完全得不到任何支持。例如我所在的学校,讲师往往由不具有博士学位的教师来担任,教学任务是普通终身教职系统内教员的2-3倍。注意,美国的讲师和英国的讲师是不同的,后者是等价于终身教职系统内职位的。此外,UNH在数学界乃至整个美国学术界也毫无名气,属于很一般的学校。无论如何,张益唐的职位都不是一个数学家理想的职位,可以说他是在讲师的位置上蛰伏了多年。引用香港浸会大学汤老师的说法, “(张益唐老师)从没有正式工作,(人们)以为(他)离开数学界了”。数十年磨一剑,终于发表了惊人的成果。

孪生素数倒数和 孪生素数猜想 张益唐究竟做了一个什么研究?

现代数学的新结果的验证往往需要很长的时间。因为所使用的新技巧,所涉及的专业知识往往都过于高深,以至于全世界只有一两位专家可以看懂。而证明又可能很长,有时竟长达上千页,很多数学家要慢慢挤出时间来看他人的证明。即使发表在顶级数学杂志的结果,也可能时候发现有错。因此,包括我本人在内,许多人也在怀疑张益唐的结果是否正确。在这里,我只简单地将事实列出,留给数学界来评判。