组合数学心得 组合数学学习心得

2017/5/29 19:16:04

在进入研究生学习的第一个学期就开设了组合数学这门课程,我感到很庆幸和开心,因为我在学完这门课程之后学到了很多东西,不仅仅是课本上的,还有许多在课本上是学不到了!

组合数学心得 组合数学学习心得

组合数学,对大多数学生来说是一门十分困难的课程,由于自己本科学的是数学,所以学起来还好,也比较喜欢这门课程。组合数学可以一般描述为:组合数学是研究离散结构的存在,计数,分析,和优化等问题的一门学科。经验证发现的组合数学最有力的工具之一为数学归纳法。

组合数学心得 组合数学学习心得

归纳是一个强有力的过程,在组合数学中尤其是如此。用数学归纳法证明一个结果常常比证明一个弱结果更容易。许多组合问题的解决常常需要某些特别的例证,而且有时需要结合使用一般的理论。

组合数学心得 组合数学学习心得

我们必须学会建立数学模型,研究模型,抓住问题的要害,灵活的应用智慧来解决问题。“图论”是组合数学课程中比较重要的一部分。在刚接触到“图”这一章的时候我是抱着好奇之心去学习的,因为这章都是关于“图” ,想了解一下和几何图形的差别, 所以觉得善长几何的我应该能够把它学好。

组合数学心得 组合数学学习心得

但是不可否认,随着知识的深入,这一章一定会比前面的更难理解,更难学。因此上课的时候听得格外认真,课后还找了一些相关书籍阅览。

组合数学心得 组合数学学习心得

在看过这些书籍以后,我才真正了解到它并不是枯燥乏味的,它的用途非常广泛,并且应用于我们整个日常生活中。比如:怎样布线才能使每一部电话互相连通,并且花费最小? 从首府到每州州府的最短路线是什么?n 项任务怎样才能最有效地由 n 个人完成?管道网络 中从源点到集汇点的单位时间最大流是多少?一个计算机芯片需要多少层才能使得同一层 的路线互不相交?怎样安排一个体育联盟季度赛的日程表使其在最少的周数内完成?我们能用4种颜色来为每张地图的各个区域着色并使得相邻的区域具有不同的颜色吗?这些问题以及其他一些 实际问题都涉及“图论” 。

组合数学心得 组合数学学习心得

这里所说的图并不是几何学中的图形,而是客观世界中某些具体事物间联系的一个数学抽象,用顶点代表事物,用边表示各式物间的二元关系,如果所讨论的事物之间有某种二元关系,我们就把相应的顶点练成一条边。

组合数学心得 组合数学学习心得

这种由顶点及连接这些顶点的边所组成的图就是图论中所研究的图。由于它关系着客观世界的事物,所以对于解决实际问题是相当有效的。

组合数学心得 组合数学学习心得

总之,图论是数学科学的一个分支,而四色问题是典型的图论课题。通过对图论的初步理解和认识,我深深地认识到,图论的概念虽然有其直观、通俗的方面,但是这许多日常生活用语被引入图论后就都有了其严格、确切的含义。我们既要学会通过术语的通俗含义更快、更好地理解图论概念,又要注意保持术语起码的严格。

组合数学心得 组合数学学习心得

学习数学重要的是理解,而不是像其它科目一样死背下来,数学有一个特点,那就是”举一反三”。做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好.学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了。

组合数学心得 组合数学学习心得

在做题的过程中,学习是一生的事情,不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果。数学的学习是一个积累和运用的过程,因此,学好数学的一个必要前提便是要注重平时的积累和运用。

而在日常时对于数学的学习还是有许多方法的。数学学习做题是极为必要的,因此做题之后的总结工作也是极为重要的,否则只能是杂而不精,无法将知识融会贯通,合理运用。

组合数学是一门既古老又年轻的数学分支。组合数学不仅在基础数学研究中具有极其重要的地位,在其他的学科中也有重要的应用,如在计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。如果说微积分和近代数学