组合数学第二版 离散数学和组合数学(第2版)(改编版)

2017/5/29 19:19:20

序言 1 真值表、逻辑和证明 1.1 语句和连接词 1.2 条件语句 1.3 等价语句 1.4 公理系统:论证和证明 1.5 命题逻辑的完备性 2 集合论 2.1 集合导引 2.2 集合运算 2.3 Venn图 2.

组合数学第二版 离散数学和组合数学(第2版)(改编版)

4 布尔代数 2.5 关系 2.6 偏序集 2.7 等价关系 2.8 函数 3 逻辑、整数集和证明 3.1 谓词演算 3.2 证明的概念与整数集的结构 3.3 素数 3.4 同余关系 4 函数 4.

1 特殊函数 4.2 基数 4.3 基数的继续讨论 5 算法 5.1 “for”过程与矩阵算法 5.2 递归函数与算法 5.3 算法复杂性 6 图、有向图和树 6.1 图 6.2 有向图 6.

组合数学第二版 离散数学和组合数学(第2版)(改编版)

3 树 6.4 欧拉路和欧拉回路 6.5 关联矩阵和邻接矩阵 7 计数 7.1 基本计数原理 7.2 包含排斥原理 7.3 排列与组合 7.4 生成排列与组合 7.5 广义排列与组合 7.6 有重复的排列与组合 7.

组合数学第二版 离散数学和组合数学(第2版)(改编版)

7 鸽巢原理 8 代数结构 8.1 偏序集的进一步讨论 8.2 半群和半格 8.3 格 8.4 群 8.5 群和群同态 9 递归的进一步讨论 9.1 齐次线性递归关系 9.2 非齐次线性递归关系 9.

组合数学第二版 离散数学和组合数学(第2版)(改编版)

3 有限差分 9.4 阶乘多项式 9.5 差分的和 10 计数的进一步讨论 10.1 占有问题 10.2 Catalan数 10.3 广义包含排斥与重排 10.4 Rook多项式和禁用位置 11 生成函数 11.

1 定义生成函数 11.2 生成函数与递归关系 11.3 生成函数与计数 11.4 划分 11.5 指数生成函数 12 图论的进一步讨论 12.1 图的代数性质 12.

组合数学第二版 离散数学和组合数学(第2版)(改编版)

2 平面图 12.3 着色图 12.4 哈密顿路和哈密顿圈 12.5 加权图和最短路算法 13 树 13.1 树的性质 13.2 分搜索树 13.3 加权树 13.4 遍历二分树 13.5 生成树 13.

6 极小生成树 14 网络 14.1 网络和流 14.2 配 14.3 佩特里网 15 染色的枚举 15.1 伯恩赛德定理 15.2 波利亚定理 16 环、整环和域 16.1 环和整环 16.2 整环 16.3 多项式 16.4 代数和多项式 参考文献 部分习题答案 中英文词汇表

组合数学第二版 离散数学和组合数学(第2版)(改编版)